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Abstract

We begin by placing the generalized Lagrangian mean (GLM) equations for a compressible adiabatic fluid into the
Euler–Poincaré (EP) variational framework of fluid dynamics, for an averaged Lagrangian. We then state the EP Averag-
ing Result—that GLM equations arise from GLM Hamilton’s principles in the EP framework. Next, we derive a new set of
approximate small-amplitude GLM equations (g�m equations) at second order in the fluctuating displacement of a Lagrangian
trajectory from its mean position. These equations express the linear and nonlinear back-reaction effects on the Eulerian mean
fluid quantities by the fluctuating displacements of the Lagrangian trajectories in terms of their Eulerian second moments. The
derivation of theg�m equations uses the linearized relations between Eulerian and Lagrangian fluctuations, in the tradition
of Lagrangian stability analysis for fluids. Theg�m derivation also uses the method of averaged Lagrangians, in the tradition
of wave, mean flow interaction (WMFI). Theg�m EP motion equations for compressible and incompressible ideal fluids are
compared with the Euler-alpha turbulence closure equations. An alpha model is a GLM (org�m) fluid theory with a Taylor
hypothesis closure (THC). Such closures are based on the linearized fluctuation relations that determine the dynamics of the
Lagrangian statistical quantities in the Euler-alpha closure equations. We use the EP Averaging Result to bridge between
the GLM equations and the Euler-alpha closure equations. Hence, combining the small-amplitude approximation with THC
yields in newg�m turbulence closure equations for compressible fluids in the EP variational framework.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Brief review of generalized Lagrangian mean (GLM) theory for compressible fluids

An exceptional accomplishment in formulating averaged motion equations for fluid dynamics is the GLM theory
of nonlinear waves on a Lagrangian-mean flow, as explained in two consecutive papers of Andrews and McIntyre
[2,3]. This section introduces the results that we shall need later from the rather complete description given in these
papers. Even now, these fundamental papers still make worthwhile reading and are taught in many atmospheric
science departments.Section 2begins by placing the GLM equations for a rotating adiabatic compressible fluid
into the Euler–Poincaré (EP) variational framework of fluid dynamics in the Eulerian description. This is first done
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explicitly by re-deriving the GLM equations using Hamilton’s principle with a GLM averaged Lagrangian. We
then explain that every ideal GLM continuum equation follows from a GLM averaged variational principle, via
the Lagrangian averaged Euler–Poincaré (LAEP) theorem of Holm[22,23]. The LAEP theorem also translates the
GLM theory into the geometrical language of EP theory. However, in this paper we shall stay with the classical
vector notation of fluid dynamics.

In Section 3, we recall the standard linearized Eulerian/Lagrangian fluctuation relations. This is done in prepara-
tion for Section 4in which we construct a small-amplitude approximation of the GLM equations for a compressible
adiabatic fluid at second order in the fluctuating displacement of a Lagrangian trajectory from its mean position. Sub-
stituting thelinearfluctuation relations into the GLM action principle in the EP framework turns out to have both lin-
earandnonlinear effects on the resulting EP equations. Another characteristic feature of these small-amplitude GLM
equations (g�m equations) is that they involve second-gradients of Eulerian mean flow quantities, in combination
with quadratic moments of the Lagrangian displacement statistics. The latter must be modeled in closing the system.

In Section 5, we introduce several additional modeling options that can produce second-order closuresg�m for the
g�m equations. These modeling options are formulated as variants of the Taylor hypothesis for frozen-in turbulence.
The resulting Taylor hypothesis closure (THC) models recover the recently discovered Euler-alpha equations for
incompressible ideal fluids. The THC models also provide a systematic basis for extending the Euler-alpha closure
equations to thecompressible case. Thus, the Euler-alpha equations reappear in a more general context than in their
original derivation in[25,26]. Section 6summarizes these THC results and provides a synopsis of the paper.

1.1. GLM motion equation for adiabatic compressible fluids

The GLM equations are based on defining fluid quantities at a displaced fluctuating position. In the GLM
description,χ̄ denotes the Eulerian mean of a fluid quantityχ = χ̄ + χ ′, while χ̄L denotes the Lagrangian mean
of the same quantity, defined by

χ̄L(x) ≡ χξ (x), with χξ (x) ≡ χ(x + ξ(x, t)). (1.1)

Herexξ ≡ x+ ξ(x, t) is the current position of a Lagrangian fluid trajectory whose mean position isx. Thus,ξ(x, t)
with vanishing Eulerian mean̄ξ = 0 denotes the fluctuating displacement of a Lagrangian particle trajectory about
its mean positionx. From its defining relation(1.1), one sees that the Lagrangian mean hastwo disadvantages,
relative to the Eulerian mean: it is history dependent and it does not commute with the spatial gradient. However,
the Lagrangian mean does commute with the advective derivative.

In GLM theory, the differenceχξ − χ̄L = χ� is called theLagrangian disturbanceof the quantityχ . One finds
χ� = 0, since the Eulerian mean possesses theprojection property¯̄χ = χ̄ for any quantityχ (and, in particular, it
possesses that property forχξ ).1

Andrews and McIntyre[2] show that, provided the smooth mapx → x + ξ(x, t) is invertible (i.e., provided the
vector fieldξ(x, t) generates a diffeomorphism), then the Lagrangian disturbance velocityu� may be expressed in
terms ofξ by

u� = uξ − ūL = DLξ

Dt
, where

DLξ

Dt
≡ ∂ξ

∂t
+ ūL · ∇ξ.

Consequently, the Lagrangian disturbance velocityu� is a genuine fluctuation quantity satisfyingu� = 0, since

uξ − ūL = uξ − uξ = 0, by the projection property of the Eulerian mean. (Alternatively,u� = DLξ/Dt = 0 also
follows, since the Eulerian mean commutes with DL/Dt andξ has mean zero.)

1 Note that spatial filtering in general doesnotpossess the projection property.
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1.1.1. GLM scalar advection relations
At position x, the velocityuξ = ūL + u� is the sum of the Lagrangian-mean velocityūL and the Lagrangian

disturbance velocityu�. Thus,uξ = DLxξ /Dt and for any scalar fieldχ(x, t) one has(
Dχ

Dt

)ξ

= DL

Dt
(χξ ).

The velocityūL appearing in the advection operator DL/Dt = ∂t + ūL · ∇ is a mean quantity; so one finds, as

expected, that the Lagrangian-mean(·)L commutes with the advective derivative D/Dt . Namely,(
Dχ

Dt

)L

= DL

Dt
(χ̄L), and

(
Dχ

Dt

)�

= DL

Dt
χ�, (1.2)

whereχ� = χξ−χ̄L is the Lagrangian disturbance ofχ satisfyingχ� = 0. For example, in an adiabatic compressible
flow, the specific entropys is advected as a scalar. That is, it satisfies Ds/Dt = 0 and, consequently, DL s̄L/Dt = 0,
as well. Hence,sξ = s̄L follows, by integration of DL(s̄L − sξ )/Dt = 0 along mean trajectories and invertibility of
the mapx → x + ξ(x, t).

1.1.2. Mass conservation: the GLM continuity equation
Remarkably,D̄L is not the density advected in the GLM theory. That is,

∂t D̄
L + div D̄L ūL 
= 0.

Instead, GLM satisfies another density advection relation—theGLM continuity equation,

∂t D̃ + div D̃ūL = 0, (1.3)

for a densityD̃, which is also a mean quantity. That is,¯̃
D = D̃, where one invokes the projection property of the

Eulerian mean. The GLM conserved densityD̃ is given by

D̃ = DξJ , where J = det(∇x(x + ξ)). (1.4)

The GLM continuity equation for the densitỹD may be shown by transforming the instantaneous mass conser-
vation relationDξ d3xξ = D(x0)d3x0 into

DξJ ≡ Dξ(x)det(∇x(x + ξ)) = D(x0)d3x0

d3x
≡ D̃

and then using the defining relation(1.1) for the Lagrangian mean in terms of the Eulerian mean. In taking the
Eulerian mean of this relation, we keep in mind thatx is the mean position, so the right-hand side isalreadyan

average quantity. Thus,̃D = DξJ satisfies ¯̃
D = D̃, as claimed, and we note thatD̃ 
= D̄L, in general. The mean

mass conservation relatioñD d3x = D(x0)d3x0, then implies the continuityequation (1.3)for D̃, upon recalling
thatūL is the velocity tangent to the mean Lagrangian positionx.

1.1.3. GLM motion equation
Although the Eulerian mean commutes with spatial gradients, it interferes with the advection operator and fails to

produce a closed system of equations. In contrast, the Lagrangian mean commutes with the advection operator and
produces the following GLM motion equation for adiabatic compressible fluids in a frame rotating with constant
frequencyΩ, as given in[2] in Cartesian coordinates,

DL

Dt
(ūL − p̄) + (ūL

k − p̄k)∇ūL
k + 2Ω × ūL + ∇Π − T̄ L∇ s̄L = 0. (1.5)
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Of course, the GLM equations are also not closed. For closure, they require certain statistical properties of the
Lagrangian disturbanceξ to be prescribed. The quantityp̄ in the GLM motionequation (1.5)is thepseudomomentum
vector, a mean quantity defined by

p̄ ≡ −[u�k + (Ω × ξ)k]∇ξk, (1.6)

whereu�k = DLξk/Dt . The mean potentialΠ in (1.5)has the form

Π = h(pξ , sξ ) + Φ̄L(x) − 1
2uξ · [uξ + 2Ω × ξ ], (1.7)

in which the mean specific enthalpy

h(pξ , sξ ) ≡ e(Dξ , sξ ) + (pξ /Dξ )

involves the mean specific internal energy as a function of mass densityDξ and specific entropysξ . The quantity
Φ̄L(x) = Φξ(x) is the Lagrangian mean of an external potentialΦ. We note thatsξ = s̄L since the specific entropy
is a Lagrangian variable in the adiabatic case. The partial derivativeT̄ L = ∂e(Dξ , s̄L)/∂s̄L is the Lagrangian-mean
temperature. For an adiabatic compressible fluid, the thermodynamic first law following a fluid parcel is

de(Dξ , s̄L) = −pξd

(
1

Dξ

)
+ T ξ ds̄L .

Hence, its Eulerian mean becomes, upon usingD̃ = DξJ from mass conservation,

de(Dξ , s̄L) = − 1

D̃
(pξdJ ) + 1

D̃
(pξ /Dξ )dD̃ + T̄ L ds̄L . (1.8)

Remark.

• The determinantJ = det(∇x(x + ξ)) is a fluctuating quantity, not a mean fluid quantity. Therefore,J will
not contribute to variations with respect to mean fluid quantities. However,δJ = K

j
k (∂δξ

k/∂xj ) with cofactor

K
j
k = J ∂xj /∂(xk + ξk) does contribute to variations with respect toξ in the self-consistent wave, mean flow

interaction (WMFI) theory of Gjaja and Holm[7]. Such variations also arise, e.g., in the Lagrangian stability
analysis of the equilibrium solutions of the GLM equations. See, e.g.[3] for a discussion of Hamilton’s principle
for the Lagrangian disturbanceξ and its relation to the wave action density of the WMFI theory.

• Thus, the transformation properties of the GLM theory provide proper definitions of thethermodynamic deriva-
tives of mean constitutive relationswith respect to GLM average fluid variables.

1.2. Pseudomomentum and the transport structure of the GLM motion equation

The significance of the pseudomomentump to the transport structure of the GLM equations can be understood
from the Lagrangian mean of the contour integral appearing in Kelvin’s circulation theorem for fluid motion in a
rotating frame. The rotation frequencyΩ is allowed to depend on position and is given by 2Ω(xξ ) = (curlR)ξ . The
rotation potentialR(xξ ) is decomposed in standard GLM fashion asRξ = R̄L +R�. (A constant rotation frequency
is recovered from specializing toRξ = Ω × xξ .)

The GLM average of Kelvin’s circulation integral is defined as

I (t)=
∮
γ ξ (t)

(uξ + R(xξ )) · dxξ =
∮
γ ξ (t)

(ūL + R̄L + u� + R�) · (dx + dξ)

=
∮
γ̄ L (t)

(ūL + R̄L + [u�k + R�
k ]∇ξk) · dx =

∮
γ̄ L (t)

(ūL + R̄L − p) · dx,
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where the contour̄γ L(t) moves with velocityūL, since it follows the fluid parcels as the average is taken. Thus,
the Lagrangian mean leaves invariant theform of the Kelvin integral, while averaging thevelocityof its contour.
In addition, the pseudomomentum vectorp defined in(1.6) appears in the GLM averaged Kelvin integral as the
Lagrangian-mean contribution of the fluctuations to the GLM averagedintegrand.

The time derivative of the GLM averaged Kelvin circulation integral is

d

dt
I (t) =

∮
γ̄ L (t)

[(∂t + ūL · ∇)(ūL − p) + (ūL
k − pk)∇ūLk + 2Ω × ūL] · dx.

The combination of terms in the integrand defines thetransport structureof the GLM theory. From the GLM motion
equation (1.5), one now finds the GLM Kelvin circulation theorem for adiabatic compressible flow

d

dt
I (t) = d

dt

∮
c(ūL )

(ūL + R̄L − p) · dx =
∮
c(ūL )

T̄ L ds̄L .

Thus, the Lagrangian meanaverages the velocityof the fluid parcels on the Kelvin circulation loop, while itadds the
mean contributionof the fluctuations to the Kelvin circulation integrand. In particular, upon taking the Lagrangian
mean, the velocity of fluid parcels on the circulation loop and the velocity appearing in the circulation integrand are
different.

In the isentropic case (or, if the loopc(ūL) moving with the Lagrangian-mean flow lies entirely on a level surface
of s̄L) then the right-hand side vanishes, and one finds the “generalized Charney-Drazin theorem” for transient
waves discussed in[2].

2. EP formulation of the GLM equations using an averaged variational principle

2.1. EP Averaging Result for GLM equations

Most of the important properties of the GLM equations are discussed in[2]. Many of these properties arise
from general mathematical structures that are shared by all exact nonlinear ideal fluid theories. With the help of
the thermodynamic identity(1.8) for de(Dξ , s̄L), we shall recast the GLM fluid motionequation (1.5)as anEP
equation,

∂

∂t

δ�̄

δūL
i

+ ∂

∂xk

(
δ�̄

δūL
i

ūL
k

)
+ δ�̄

δūL
k

∂ūL
k

∂xi
= D̃

∂

∂xi

δ�̄

δD̃
− δ�̄

δs̄L

∂s̄L

∂xi
, (2.1)

expressed in terms of variational derivatives of an averaged Lagrangian,�̄(ūL , D̃, s̄L). See[25,26]for an exposition
of the mathematical structures that arise in the EP theory of ideal fluids that possess advected quantities such as
heat and mass. For GLM, the Eulerian expression of the averaged Lagrangian is

�̄(ūL , D̃, s̄L) =
∫

d3xD̃


1

2

∣∣∣∣ūL + DLξ

Dt

∣∣∣∣
2

+ (Ω × xξ ) ·
(

ūL + DLξ

Dt

)
− Φ(xξ ) − e(Dξ , s̄L)


 . (2.2)

The mean Lagrangian̄� ≡ ∫
L̄(ūL , D̃, s̄L; ξ)d3x is a straight transcription of the standard Lagrangian for adiabatic

fluids into the GLM formalism, followed by taking the Eulerian mean. If desired, the rotation frequency can be
allowed to depend on position by replacing(Ω × xξ ) → R(xξ ), in which case 2Ω → (curlR)ξ . The variational
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derivatives of�̄ are given by

δ�̄=
∫

d3x

[
D̃(ūL − p̄ + Ω × x) · δūL − D̃T̄ Lδs̄L − ΠδD̃

+D̃[u�k + (Ω × ξ)k](∂t δξk + ūL · ∇δξk) + pξK
j
k

(
∂δξk

∂xj

)]
, (2.3)

whereKj
k = J ∂xj /∂(xk + ξk) is the cofactor that arises in the thermodynamic identity(1.8). Thus, the pseudomo-

mentump̄ defined in(1.6), the Lagrangian-mean temperatureT̄ L = ∂e(Dξ , s̄L)/∂s̄L and the potentialΠ in (1.7)
all arise naturally in the variational derivatives of the Lagrangian�̄ in (2.2)with respect to the mean fluid quantities.

One may verify that the GLM motionequation (1.5)for the mean fluid motion is now recovered by substituting
the variational derivatives of̄� in ūL, D̃ ands̄L into the EPequation (2.1). This computation places the GLM theory
into the EP framework for the averaged Lagrangian(2.2)and, thus, directly proves the following.

Lemma 1 (GLM adiabatic fluids satisfy EP equations).The GLM motion equation(1.5)for a compressible adiabatic
fluid results when variations of the averaged Lagrangian(2.2)are substituted into the EP equation(2.1).

This lemma suggests that a much broader principle is operating, namely the followimg theorem.

Theorem 2.1 (EP Averaging Result).GLM averaging preserves the four equivalence relations of the EP theorem
of Holm et al. [25,26].

This is verified by the LAEP theorem stated and proved in[23]. Hence, we have the variational property.

Corollary 1 (Variational Reduction Property).GLM motion equations follow from GLM-averaged EP variational
principles.

The variational reduction property is summarized by the following commutative diagram.

2.1.1. Sketches of Proofs
The EP Averaging Result 2.1 follows from the LAEP theorem of Holm[23]. It also follows “by bare hands” upon

using the definition of GLM averaging. First, one observes that the GLM average of a right-invariant Lagrangian
is still right-invariant, so the Lagrange-to-Euler reduction and GLM averaging are compatible in the EP theorem
of Holm et al. [25,26], which requires this right-invariance. (This observation takes us along the top and down
the right side of the commutative diagram above.) Second, the GLM average of the motion equation preserves the
transport structure of the Kelvin circulation theorem, which is also implied by the EP theorem. (This is verified by
the GLM Kelvin circulation loop analysis inSection 1.2.) Third, byEq. (1.2), the GLM average preserves the form
of the advection relations. Finally, to identify the averages of thermodynamic derivatives that appear in the averaged
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motion equation and, thus, complete the proof, one uses commutation of exterior derivatives and GLM averaging
in the definitions of these average thermodynamic variables. For example, the average temperature of a fluid parcel
is correctly defined from the GLM average of the First Law, since thermodynamic relations are applied in ideal
fluid theories for each fluid parcel as aclosed system. Moreover, thesamedefinitions are used in the variational
derivatives of the averaged Lagrangian. These observations are sufficient to directly prove Result 2.1—the EP
Averaging Result. For more details, see[22,23]. There, the EP Averaging Result is visualized as the front face of a
cube of six interlocking commutative diagrams representing the equivalence relations of the LAEP Theorem.

Corollary 1follows immediately from Result 2.1 for any Euler fluid equation that is also an EP equation before
the averaging is applied. Moreover,Corollary 1can also be proven independently by using the Clebsch procedure,
e.g., which places the GLM averaged equations and their average advection relations directly into the EP variational
framework. Descriptions of the Clebsch procedure in this context are given in[33,24].

The EP Averaging Result and its corollary the variational reduction property allow extension of the exact nonlinear
GLM theory to include, e.g., the continuum theory applications of the EP theorem considered in[25,26], and the
geophysical fluids applications considered in[1,27]. The remainder of this paper will be devoted to exploring some
of the applications of the EP Averaging Result in the small disturbance approximation.

2.2. GLM results arising in the EP framework

The EP framework instills several fundamental properties, including some that the GLM theory is already known
to possess. These known properties include the Kelvin circulation theorem, the balance laws for energy and mo-
mentum, and the potential vorticity conservation law for GLM. These properties are briefly expressed in the EP
framework, as follows. For more details and the original development of the EP theory with advected parameters, see
[25,26].

2.2.1. EP Kelvin circulation theorem for adiabatic GLM
The EP motionequation (2.1)can be rewritten inLie-derivative form, as(

∂

∂t
+ £ūL

)(
1

D̃

δ�̄

δuL · dx
)

= d
δ�̄

δD̃
− 1

D̃

δ�̄

δs̄L ds̄L ,

where £̄uL is the Lie derivative with respect to the Lagrangian-mean velocity,ūL. Integrating this form of the EP
motion equation around a loopc(ūL) moving with the average motion of the fluid provides theKelvin–Noether
theoremin the EP framework for adiabatic compressible fluids, as

d

dt

∮
c(ūL )

1

D̃

δ�̄

δūL · dx = −
∮
c(ūL )

1

D̃

δ�̄

δs̄L ds̄L .

Hence, for adiabatic compressible GLM flow, fromEq. (2.3)for the required variational derivatives one recovers
Eq. (1.2)as

d

dt

∮
c(ūL )

(ūL − p̄ + Ω × x) · dx =
∮
c(ūL )

T̄ L ds̄L .

2.2.2. Energy balance for adiabatic GLM
Legendre transforming the mean Lagrangian�̄ in Eq. (2.2)yields

Ē =
∫

δ�̄

δūL · ūL d3x − �̄ =
∫

D̃

[
1

2
|ūL |2 + 1

2
|u�|2 + Φ̄L(x) + e(Dξ , s̄L) − (u� + Ω × ξ) · ∂t ξ

]
d3x.
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Except for the last term, this is the total mean energy of the adiabatic GLM theory. The last term in the energy
quantityĒ involves the “pseudoenergy”

ē ≡ [u�k + (Ω × ξ)k]∂t ξ k. (2.4)

This term is independent of the internal energy and has a common factor with the pseudomomentum defined earlier

−p̄ ≡ [u�k + (Ω × ξ)k]∇ξk.

In fact, these two quantities may be expressed equivalently as

D̃ē = πk∂t ξk and D̃p̄ = −πk∇ξk,

whereπk ≡ δ�/δ(∂t ξ
k) = D̃[u�k + (Ω × ξ)k] is the momentum density canonically conjugate toξk, beforethe

Eulerian mean is taken in the Lagrangian�̄.
The spatially integrated pseudoenergy is given by

〈ē〉 =
∫

D̃ē d3x =
∫

πk∂t ξk d3x.

This term would havecancelled, had we performed the complete Legendre transformation,

Ē =
∫ (

δ�̄

δūL · ūL + δ�̄

δ(∂t ξ)
∂t ξ

)
d3x − �̄ = Ē +

∫
π · ∂t ξ d3x

in both fluid and wave properties. The pseudoenergyē in Eq. (2.4)is thus understood to be the mean mechanical
action per unit mass of the fluctuating Lagrangian displacement field. The complete Legendre transformation yields
the expected result for the conserved total mean energy for a self-consistent theory

Ē =
∫

D̃

[
1

2
|ūL |2 + 1

2
|u�|2 + Φ̄L(x) + e(Dξ , s̄L)

]
d3x.

Hence, we find that d̄E/dt = −(d/dt)
∫
π · ∂t ξ d3x = −(d/dt)

∫
D̃ē d3x, since the total mean energȳE must be

conserved for a theory with no sources or sinks of energy. This holds by Noether’s theorem for the mean Lagrangian
�̄ in Eq. (2.2).

2.2.3. Remark about averaging and conservation laws
Before averaging, the integratedinstantaneouspseudomomentum is defined as

〈p〉 =
∫

D̃p d3x = −
∫

πk∇ξk d3x.

The spatially integrated quantity〈p〉generates infinitesimal Eulerian spatial shifts of the wave properties ascanonical
transformations. That is,

{〈p〉, ξ} = ∇ξ and {〈p〉, π} = ∇π,

where{F,H } is the canonical Poisson bracket with{ξ(x′), π(x)} = δ(x − x′).
Under this canonical Poisson bracket, one may verify the formulas in[20]

A = −
∫

π · ∂aξ d3x ⇒ {A, ξ} = ∂aξ and {A, π} = ∂aπ.

That is, the functionalA generates a translation in phase space for any parametera that admits integration by
parts. If the solutions in phase space(π, ξ) are averaged over such a parameter, then the averaged generator of the
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translations,̄A = − ∫ π · ∂aξ d3x, will be conserved. For example, theith component̄pi of the pseudomomentum
would be conserved, if the solutions(π, ξ) were averaged over space in theith direction.

2.2.4. Remark—the relation between GLM and WMFI
The GLM and WMFI theories are closely related. For example, the WMFI wave action density has the same

character as the GLM quantities, pseudomomentum and pseudoenergy, which may also be aptly expressed in terms
of a single-frequency WKB wave packet. By varying the wave propertiesξ in the averaged Lagrangian as well as
the mean fluid properties, Gjaja and Holm[18] constructed aself-consistentLagrangian-mean WMFI theory. This
WMFI theory reduced to GLM theory when the statistics ofξ wereprescribed.

To explain how the wave action density of the WMFI theory is related to the GLM pseudomomentum, we make
the following pre-canonical transformation

D̃p̄ · dx = −πk · ∇ξk · dx = −π · dξ .

If ξ andπ depend on a phase parameterφ, we may write the phase-averaged differential relation as

−π · dξ = −πk∂φξk dφ = N dφ = Nk · dx,

where the wavevectork is defined by dφ = ∇φ ·dx = k·dx. Thus, we obtain the wave action densityN = −πk∂φξk,
which is related to the GLM pseudomomentum byD̃p̄ = Nk. For the WKB wavepacketξ = 1

2(a eiφ/ε +a∗ e−iφ/ε),
one finds the formula

N

D̃
= −

[
DLξ

Dt
+ (Ω × ξ)

]
· ∂φξ = 2ω̃|a|2 + 2iΩ · a × a∗ + 2

(
a · DLa∗

Dt

)
,

in which ω̃ = −DLφ/Dt = ω − k · ūL is the Doppler-shifted wave frequency. This formula agrees with the wave
action densityN appearing in WMFI studies such as that of Gjaja and Holm[18]. As a result of the symmetry under
translations inφ introduced by phase-averaging the Lagrangian, we have

0 = − ∂

∂t

∂L̄

∂(∂tφ)
− div

∂L̄

∂(∇φ)
= ∂N

∂t
+ ∂

∂xj
(NūLj − pξK

j
i ∂φξ

i),

upon using the variational derivatives inEq. (2.3). Andrews and McIntyre[3] obtain the same conservation law
by directly manipulating the GLM motionequation (1.5). This equivalence, of course, is guaranteed by the EP
Averaging Result 2.1.

We recover this conservation law as a result ofNoether’s theoremfor the averaged Lagrangian. Thus, we have
the following the lemma.

Lemma 2. When averaging introduces an ignorable coordinate, the average of the corresponding canonically
conjugate momentum is conserved. In this case, the conserved wave action density N is the phase-averaged generator
of phase shifts.

Remark.

• The GLM pseudoenergȳe is related to the wave action densityN by D̃ē = Nω, which again identifies̄e as an
action variable.

• The self-consistent WMFI theory is closed by writing the pseudomomentum asD̃p̄ = Nk and using thecon-
servation of wavesrelation,∂tk = ∇ω. In this equation, the frequency variableω must still be determined.
Until this point, no small-amplitude assumption has been made. Introducing a small-amplitude approximation
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allows the frequencyω to be determined from its dispersion relation in terms of fluid and wave mean properties,
as was pioneered in[37,38]. See[18] for more details, including the Lie–Poisson Hamiltonian structure of the
self-consistent WMFI theory, which is reminiscent of the Landau two-fluid model of superfluid Helium.

2.2.5. EP momentum balance for adiabatic GLM
The momentum conservation law for the EP theory is (by Noether’s theorem)

∂t m̄
L
i + ∂j T̄

j
i = ∂L̄

∂xi

∣∣∣∣∣
exp

, (2.5)

wherem̄L = δ�̄/δūL is the Lagrangian-mean momentum density, the stress tensorT̄
j
i is given by

T̄
j
i = m̄i ū

Lj + δ
j
i

(
L̄− D̃

∂L̄

∂D̃

)

and ∂L̄/∂xi |exp denotes the derivative with respect to the explicit spatial dependence that arises in the mean
Lagrangian̄� in (2.2)after averaging over the statistics ofξ . For the adiabatic GLM theory, this stress tensor is given
by

T̄
j
i = D̃(ūL

i − p̄i + (Ω × x)i)ūLj + δ
j
i D̃

(
pξ

Dξ

)
. (2.6)

The momentum balance law for adiabatic GLM is specified, only after∂L̄/∂xi |exp is specified, by giving the spatial
dependence in(2.2)of the wave properties and external potential in the Lagrangian densityL̄. This is the requirement
for obtaining closure in the GLM theory.

2.2.6. Local EP potential vorticity conservation for adiabatic GLM
Invariance of the Lagrangian under diffeomorphisms (interpreted physically as Lagrangian particle relabeling)

implies the local conservation law for EP potential vorticity

DL

Dt
q̄L = 0, where q̄L = 1

D̃
∇ s̄L · curl

(
1

D̃

δ�̄

δūL

)
.

For the adiabatic GLM case, the potential vorticity is given explicitly as

q̄L = 1

D̃
∇ s̄L · curl(ūL − p̄ + Ω × x).

Note the relation of the potential vorticity to the Kelvin circulation theorem. This is particularly apparent when the
Kelvin theorem for adiabatic GLM theory is recast in terms of surface integrals using Stokes theorem, as

d

dt

∫∫
A

curl(ūL − p̄ + Ω × x) · n̂ dA =
∫∫

A

∇T̄ L × ∇ s̄L · n̂ dA,

where the boundary of the surfaceA is the fluid loop,∂A = c(uL).

2.2.7. GLM helicity
The EP helicity is given by

Λ̄L =
∫ (

1

D̃

δ�̄

δūL

)
· curl

(
1

D̃

δ�̄

δūL

)
d3x.
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The corresponding GLM helicity is not conserved in the adiabatic case, although it is conserved in the GLM theory
for the three-dimensional barotropic case. (The same is true, before averaging.)

2.3. EP results for the GLM Boussinesq stratified fluid

The Eulerian expression of the averaged Lagrangian for a Boussinesq stratified fluid is

�̄(ūL , D̃, θ̄L)

=
∫ 
D̃


1

2

∣∣∣∣ūL + DLξ

Dt

∣∣∣∣
2

+ (R̄L + R�) ·
(

ūL + DLξ

Dt

)
− Φ(xξ ) − gzθ̄L


− pξ (D̃ − J )


 d3x. (2.7)

This mean Lagrangian̄� ≡ ∫
L̄(ūL , D̃, θ̄L)d3x is a straight GLM decomposition of the standard Lagrangian for

Boussinesq stratified fluids, followed by taking the Eulerian mean. The relative buoyancyθ is advected as a scalar
in the Boussinesq approximation

∂t θ + u · ∇θ = 0,

so we have already substitutedθξ = θ̄L. The rotation frequencyΩ depends on position and is given by 2Ω(xξ ) =
(curlR)ξ . The rotation potential is decomposed in standard GLM fashion asRξ = R̄L + R�. Finally, the pressure
pξ is a Lagrange multiplier that imposes the constraint relation defining the conserved GLM densityD̃ = DξJ ,
for Dξ = 1.

Remark. The kinetic energy is the same here as inEq. (2.2)for the adiabatic compressible fluid, and the relative
buoyancy is perfectly analogous to the entropy per unit mass. Moreover, the pressure constraint is also analogous
to internal energy. So, one should expect no substantial difference to occur in passing from the adiabatic GLM case
to the Boussinesq GLM equations.

2.3.1. Variational derivatives and EP equation for GLM Boussinesq stratified fluid
The variational derivatives required for the EPequation (2.1)—with entropys̄L replaced by buoyancȳθL—are

obtained from (ignoring variational derivatives inξ now and henceforth)

δ�̄ =
∫

d3x[D̃(ūL − p̄ + R̄L) · δūL − D̃gzδθ̄L − ΠBδD̃]. (2.8)

Here, the pseudomomentum is defined byp̄ = −(u�j + R�
j )∇ξj and the Boussinesq potentialΠB is defined by

ΠB = πB + gzθ̄L + ūL · R̄L ,

where

πB = p̄L + Φ̄L(x) − 1
2uξ · (uξ + 2R�).

Herep̄L = pξ is the Lagrangian-mean pressure, cf.Eq. (1.7)for the potential in the adiabatic compressible case.
We substitute these variational derivatives into the EPequation (2.1), with the analogous replacements̄L → θ̄L, to
find the following GLM motion equation for a stratified Boussinesq fluid in Cartesian coordinates[

DL

Dt
(ūL − p̄) + (ūL

k − p̄k)∇ūL
k

]
+ 2Ω × ūL + ∇πB + gθ̄L ẑ = 0. (2.9)
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Remark.

• Stratified Boussinesq fluids and adiabatic compressible fluids admit very similar forms of the EP Averaging
Result.

• The GLM Boussinesq motionequation (2.9)is very similar to the corresponding adiabatic compressibleequation
(1.5). However, it is different in an important way from the corresponding Eqs. (8.7a) and (9.1) of Andrews and
McIntyre [2], which both contain only DL ūL/Dt , instead of the combination of four terms in square brackets
written here. (This error was not repeated in[6], Eq. (9.4).) Only with the correct combination of these four terms
can the Kelvin circulation theorem for GLM be satisfied properly.

2.3.2. EP Kelvin circulation theorem for GLM Boussinesq stratified fluid
The EP framework provides theKelvin–Noether theoremfor Boussinesq stratified fluid, in the form

d

dt

∮
c(ūL )

1

D̃

δ�̄

δūL · dx = −
∮
c(ūL )

1

D̃

δ�̄

δθ̄L
dθ̄L .

Hence, for the GLM Boussinesq stratified fluid one has

d

dt

∮
c(ūL )

(ūL − p̄ + R̄L(x)) · dx =
∮
c(ūL )

gzdθ̄L ,

where curlR̄L(x) = 2Ω(x). If the loopc(ūL) moving with the Lagrangian-mean flow lies entirely on a level surface
of θ̄L, then the right-hand side vanishes, and one recovers for this case the “generalized Charney-Drazin theorem”
for transient Boussinesq internal waves, in analogy to the discussion in[2] for the adiabatic compressible case.

2.3.3. Momentum balance for GLM Boussinesq stratified fluid
For a mean Lagrangian densitȳL, the EP theory yields the momentum balance

∂t m̄i + ∂j T̄
j
i = ∂L̄

∂xi

∣∣∣∣∣
exp

,

with terms defined in analogy with the compressible GLM case.

2.3.4. Local potential vorticity conservation for GLM Boussinesq stratified fluid
Invariance of the Lagrangian under diffeomorphisms (interpreted physically as Lagrangian particle relabeling)

implies the local conservation law for EP potential vorticity,

DL

Dt
q̄L = 0, where q̄L = 1

D̃
∇ θ̄L · curl

(
1

D̃

δ�̄

δūL

)
.

For the GLM case, the potential vorticity is given explicitly as

q̄L = 1

D̃
∇ θ̄L · curl(ūL − p̄ + R̄L(x)).

Again, the EP framework explains the relation of the potential vorticity to the Kelvin circulation theorem.
Other considerations in the EP framework for the GLM Boussinesq stratified fluid closely follow the developments

for the GLM adiabatic fluid, modulo simple adjustments for replacings̄L → θ̄L, in the momentum and energy
balance laws, e.g.
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2.4. Section summary

This section shows that passing from the Euler equations for ideal compressible and incompressible fluids to the
GLM equations admits theEP Averaging Result. Namely, under GLM averaging, the EP equations for the averaged
Lagrangian are identical to the averaged EP equations. Because of the EP Averaging Result, one finds that the Kelvin
circulation theorem, the balances for energy and momentum and the local conservation law for potential vorticity all
arise as general features of GLM-averaged EP fluid theories. Concepts in GLM theory such as pseudomomentum
and wave action density also arise naturally as general features in the EP context.

Thus, the EP Averaging Result places the exact nonlinear GLM theory into the realm ofaveraged Lagrangiansfor
Eulerian fluid mechanics in the EP framework. This framework allows further structure-preserving approximations
of the GLM equations to be made using the EP variational formulation.

Being derivable in the EP framework, the GLM theory also possesses other fundamental structure that is shared
by all ideal fluid theories in the EP framework. In particular, the EP framework leads to the Lie–Poisson Hamiltonian
formulation for GLM theory, as well as to the potential–vorticity Casimirs associated with this Lie–Poisson bracket.
In turn, this structure leads to the energy-Casimir method for characterizing equilibrium solutions of the GLM equa-
tions for ideal fluids as critical points of a constrained energy and for establishing their nonlinear Liapunov stability
conditions. For an explanation of this additional structure and many applications in fluids and plasmas, see[28].

All of these additional features are now available to the GLM theory of fluid dynamics. However, we shall
forego investigating these other implications here and pass to the formulation of an approximate set of Eulerian
mean equations based on a small-amplitude approximation of the GLM theory. We refer to[25,26] for detailed
descriptions, derivations and basic references to other works concerning the underlying geometry associated with
the EP framework for ideal fluids with advected quantities.

Remark.

• The GLM equations may also be obtained by averaging in Hamilton’s principle at constant fluid parcel label
in the Lagrangian description, then transforming the result to the Eulerian description and again using the EP
theory. This approach was taken in[18] in developing a self-consistent WMFI theory for the Boussinesq stratified
case. The same approach was taken by Holm[21] in developing nonlinear THC for both compressible and
incompressible flows. The equivalence of these other approaches to the present approach is proven by the LAEP
theorem in[22,23].

• Regarding stability of the GLM solutions, see[3] for discussion of a variational principle for linear evolution of
small disturbances of a Lagrangian-mean flow. In this regard, see also the classical works mentioned earlier on
Lagrangian fluid stability analysis and WMFI theory.

3. Linearized Eulerian/Lagrangian fluctuation relations

In principle, the GLM theory is more accurate than an Eulerian mean theory, because its scalar advection relations
hold exactly, and it preserves the EP structure of the original unapproximated equations. That is, being an EP theory,
GLM preserves the standard ideal fluid relations for energy, momentum and potential vorticity, as well as possessing
a Kelvin circulation theorem. However, the results of any Lagrangian-mean theory are difficult to interpret accurately
in an Eulerian setting. In addition, the Lagrangian-mean statistics themselves are affected by the mean motion at
finite-amplitude Lagrangian displacement and, thus, cannot be taken as prescribed quantities. Therefore, one sees
the need for an Eulerian mean counterpart to the GLM theory in the small-amplitude approximation. A theory of
this type was recently initiated in[6] in the context of the gravity wave parameterization problem.
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In preparation for producing a variational complement to the small-amplitude GLM theory, we shall first discuss
the linearized Eulerian/Lagrangian fluctuation relations.

3.1. Taylor series approximations of Eulerian fluctuations at linear order in the Lagrangian displacementξ

In the GLM theory, the displaced fluid velocity is given by

u(x + ξ, t) = ūL(x, t) + u�(x, t),

where

u�(x, t) = ∂

∂t
ξ + ūL · ∇ξ ≡ DLξ

Dt
.

A Taylor series approximation shows that the Eulerian velocity fluctuationu′ is related to the Lagrangian disturbance
velocity u�, as well as the fluctuating displacementξ and the Eulerian mean velocitȳu at linear order inξ by

u� = u′ + ξ · ∇ū.

Therefore, we find the important relation at linear order,

u′(x, t) = ∂

∂t
ξ + ū · ∇ξ − ξ · ∇ū (u′ equation). (3.1)

Likewise, for a scalar quantityχ , we have the linear-order relation,χ� = χ ′ + ξ · ∇χ̄ . Consequently, we find

χ ′ = −ξ · ∇χ̄ (χ ′ equation) (3.2)

for anadvected scalarχ (sinceχ� = 0 for an advected scalar). For a conserved density,D, the linear-order Taylor
approximation is

D� = D′ + ξ · ∇D̄ = −D̄div ξ.

Consequently, the Eulerian density fluctuationD′ and Eulerian mean densitȳD are related to the Lagrangian
fluctuating displacement at linear order inξ for a conserved densityD by

D′ = −div(D̄ξ) (D′ equation). (3.3)

Theu′ andD′ equations imply

(D̄u′ + D′ū) = ∂t (D̄ξ) − curl(ū × D̄ξ).

Taking the divergence of this relation and using theD′ equation then implies thelinearized continuity equation

∂tD
′ = −div(D̄u′ + D′ū). (3.4)

Remark.

• Theu′, χ ′ andD′ equations arestandardin Lagrangian stability analysis. See[17] for a historical survey of the
use of these linearized fluctuation relations, especially in astrophysics.

• The linearized continuity equation and the projection property¯̄χ = χ̄ for any quantityχ imply that the Eulerian
mean densityD̄ satisfies the usualcontinuity equation

∂t D̄ + div D̄ū = 0 (3.5)

in terms of the Eulerian mean velocityū.
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• Theu′ equation (3.1)may also be expressed in geometrical language in terms of the ad-operator defined on the
Lie algebra of vector fields. Namely, as the linear relation

u′ = ∂t ξ + adūξ.

In this expression, the ad-operator is defined in terms of the commutator operation for vector fields [·, ·] by

adūξ = [ū, ξ ] = ū · ∇ξ − ξ · ∇ū = −£ξ ū/,

where superscript(·)/ denotes a vector field.
• In geometrical language, the Eulerian fluctuating component of any advected quantitya is given at linear approx-

imation inξ by

a′ = −£ξ ā,

whereā is the Eulerian mean and £ξ denotes the Lie derivative corresponding to the diffeomorphism generated
by the vector fieldξ , the fluctuating displacement of the Lagrangian trajectory away from its mean positionx.

• A strong connection exists between the present approach and the GLM approach to WMFI discussed in[18]. In
that paper, attention concentrated on modeling the Lagrangian fluid trajectory displacement fluctuationξ(x, t) as
a WKB wave packet. Here we shall use the linear relations forD′ andu′ to derive Eulerian mean fluid equations
that approximate the GLM fluid motion equations at second order in the fluctuation displacementξ .

4. Deriving g�m—the order O(|ξ |2) GLM equations

In this section, we shall obtain a set of Eulerian-mean equations that approximate the GLM equations at second
order in the displacementξ . Following ideas familiar in Lagrangian fluid stability analysis, we shall derive these
approximate equations from a variational principle based on first taking the Eulerian mean of the second-variation of
the GLM Lagrangian and then using the EP formulation. Our strategy for developing this order O(|ξ |2) approximate
Eulerian mean counterpart for GLM is as follows.

We base the structure-preserving approximations of the GLM theory implemented here in the EP framework
on a two-step procedure. The first step linearizes the Eulerian/Lagrangian fluctuation relation. (This linearization
describes how small fluctuations of a given fluid quantity around its Eulerian mean are related to the fluctuating
displacement of a Lagrangian fluid parcel trajectory around its mean position.) The second step substitutes these
linearized fluctuation relations into the second-variation of the Lagrangian in Hamilton’s principle. The Eulerian
mean is then applied. This produces an averaged second-variation Hamilton’s principle whose coefficients are
Eulerian mean second moments of fluctuating Lagrangian displacements. Finally, variations are taken with respect to
Eulerian mean fluid quantities and thereby one obtains the averaged motion equation in the EP framework. Thus, the
first step of this procedure is reminiscent of the traditional approach in linear Lagrangian stability analysis for fluids.
This traditional approach also invokes the second-variation of a fluid action principle with respect to Lagrangian
displacements. However, there is a difference—the procedure here involves fluctuating linear displacements from a
mean solution, not deterministic linear displacements from a steady solution as in the traditional stability analysis.

The second-variation Lagrangian contains quadratic terms inξ , whose coefficients depend on the Eulerian mean
fluid quantities. The second step of our procedure begins by taking the Eulerian mean of the second-variation
Lagrangian over the quadratic moments of these fluctuating displacements,ξ . We then take variations of this averaged
Lagrangian, with respect to the Eulerian mean fluid quantities, and use the EP framework. (In Lagrangian stability
analysis, first, one does not average and, second, one takes variations with respect to the Lagrangian displacements,
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not the steady solutions.) The resulting EP equations express the back-reaction effects on the Eulerian mean motion
equation of the fluctuating displacements of the Lagrangian trajectories in terms of their Eulerian second moments.
This two-step procedure is performed within the EP framework for right-invariant Lagrangians that are defined
on the tangent space of a group. For fluids, this is the group of diffeomorphisms representing the fluid motions,
including the Lagrangian fluctuating displacements themselves.

We summarize this two-step procedure in symbols, as follows.

Step 1

• Linearize the fluctuation relations to findEqs. (3.1)–(3.3),

D′ = −div D̄ξ, χ ′ = −ξ · ∇χ̄ , u′ = ∂t ξ + ū · ∇ξ − ξ · ∇ū.

• Substitute these relations into the second-variation Lagrangian, to form

�′′ =
∫

[∂t ξ · A · ∂t ξ + ∂t ξ · B · ξ + ξ · C · ξ ] d3x,

whereA, B, C are matrix operators involving the mean fluid quantitiesand their gradients, i.e., the set
{ū, D̄,∇ū,∇D̄}.

Step 2

• Take the Eulerian mean to form the total mean Lagrangian

�̄ = �̄0 + 1
2�

′′.

• Derive theg�m motion equation for barotropic compressible fluids by computing the EP equation

d

dt

1

D̄

δ�̄

δū
+ 1

D̄

δ�̄

δūj
∇ūj = ∇ δ�̄

δD̄

for the total mean Lagrangian̄� by taking its variations

δ�̄ =
∫ [(

δ�̄

δū

)
· δū +

(
δ�̄

δD̄

)
δD̄

]
d3x.

These variational derivatives involve Eulerian means of quadratic combinations of the Lagrangian fluctuating
displacementξ , and its derivatives∂t ξ and∇ξ . For example, one combination that appears isπj∇ξj , where
π = 1

2δ�
′′/δ(∂t ξ) = A · ∂t ξ + B · ξ is the momentum canonically conjugate toξ . These Lagrangian quadratic

statistical moments areunknown parametersin the g�m equations that must be independently specified, or
modeled, in closing the equations. Thus, a number of modeling decisions must be made in closing anyg�m

model.
In Section 5, we shall discuss the various modeling parameters required to produce a closedg�m model. This

will be done in the context of simplifying them and constructing a more manageable class of closed equations—the
alpha models—obtained by using closures based on Taylor’s hypothesis of frozen-in turbulence.

The equations derived from this two-step procedure—being the small-amplitude approximation of the GLM
equations—are calledg�m equations. They are derived within the EP framework. These new equations describe the
dynamics of Eulerian mean fluid quantities influenced by small-amplitude fluctuations. Being EP equations, they
still retain the properties that result from particle relabeling symmetry. In particular, theg�m equations retain the
Kelvin–Noether circulation theorem and its associated local conservation law for potential vorticity.
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4.1. Expanding the Lagrangian�(u,D) in Hamilton’s principle for barotropic fluids

Into the Lagrangian�, we substituteu = ū + εu′ andD = D̄ + εD′, then truncate at quadratic order inu′ and
D′ to find

� = �0 + ε�′ + ε2

2
�′′, with ′ = d

dε

∣∣∣∣
ε=0

.

Variations of� are given by

�′ = d

dε

∣∣∣∣
ε=0

�(ū + εu′, D̄ + εD′) =
〈
δ�

δū
,u′
〉
+
〈
δ�

δD̄
,D′

〉
,

where〈f, g〉 = ∫
fgd3x, is theL2 pairing. The quadratic functional�′′ is the second-variation of the Lagrangian�

in the basisu′ andD′. That is,

�′′ = 〈(u′,D′),D2�(ū, D̄) · (u′,D′)〉. (4.1)

(This is the connection to linear Lagrangian fluid stability theory.) Note that we treat�′′ genuinely as a second-variation;
so there are no double-prime terms, such asu′′.

Theaveraged Lagrangianat second order is then

�̄ = �̄0 + 1
2ε

2�′′, since �′ = 0, for u′ = 0 = D′.

Recall that the Eulerian mean satisfies the projection property,¯̄u = ū, and it commutes with the spatial gradient,
∇u = ∇ū. On substituting the linearized fluctuation relations forD′, χ ′ and u′ into �′′, we find the expected
quadratic form

�′′ =
∫

[∂t ξ · A · ∂t ξ + ∂t ξ · B · ξ + ξ · C · ξ ] d3x.

TheA,B,C in this quadratic form are matrix operators involving the mean fluid quantitiesand their gradients, i.e.,
the set{ū, D̄,∇ū,∇D̄}. Consequently, after taking variations, the contribution from the mean fluctuation Lagrangian
�′′ to the mean momentum in the corresponding EP equation will depend onsecond-gradientsof the mean fluid
quantities. The Lagrangian�′′ is a functional of the Eulerian mean quadratic moments of the Lagrangian fluctuation
displacements. Consequently, the resulting EP equation will also depend parametrically on the second-order statistics
of the Lagrangian fluctuations.

Summary. In the EP framework for theg�m equations, we expand the Lagrangian to second order inξ , take its
Eulerian mean, vary it with respect toū andD̄, and then model the second-order statistics ofξ that appear in the
resulting EP motion equation forū.

Our next steps are:

1. Compute the mean momentum of the fluctuations

m′′ = δ

δū

(
1

2
�′′
)
.

2. Write the EPg�m equations for total momentum

m̄ = δ�

δū
, �̄ = �̄0 + (1

2�
′′).



270 D.D. Holm / Physica D 170 (2002) 253–286

3. Obtain a Kelvin circulation theorem forg�m equations from their corresponding EP equations and the Kelvin–
Noether theorem for these equations.

4. Derive theg�m energy balance by Legendre transforming�̄, the averaged Lagrangian.
5. Derive theg�m stress tensor̄T j

i in theg�m momentum balance law,∂t m̄i + ∂j T̄
j
i = ∂L/∂xi |exp, including the

“fluctuation stresses” by invoking Noether’s theorem again.
6. Use the result inSection 5to interpret the Euler-� model stresses, circulation and momentum ing�m terms.

4.2. Theg�m approximations for a barotropic compressible fluid

We shall now drop any dependence of the fluid internal energy on specific entropy, here and in what follows.
Thus, we shall treat only the case of abarotropic, or isentropic, compressible fluid. We shall evaluate the necessary
variational derivatives of̄� with respect tōu andD̄ by using the linearized relations (definitions) foru′ andD′ in
terms of the infinitesimal generatorξ(x, t) in Eqs. (3.1) and (3.3).

4.2.1. Eulerian-mean Lagrangian at orderO(|ξ |2)
To second order, the Eulerian-mean of the Lagrangian for a barotropic (isentropic) compressible fluid is

given by

�̄(ū, D̄) = �̄0 + 1

2
�′′ =

∫ [
1

2
D̄|ū|2 − D̄e(D̄)

]
d3x +

∫ [
1

2
D̄|u′|2 + D′u′ · ū − c2(D̄)

2D̄
D′2

]
d3x. (4.2)

For such a fluid, the equation of state definesc2(D̄) via

∂2

∂D̄2
(D̄e(D̄)) = ∂

∂D̄
h(D̄) = c2(D̄)

D̄
.

Note, before averaging, the quantity�′′ in Eq. (4.1)is simply the second-variation of the Lagrangian�(u,D) with
respect to the Eulerian mean velocity and density, evaluated at the mean fluid values,ū andD̄.

The variational derivatives of the mean fluctuational parts of�̄ are given by

δ

(
1

2
�′′
)

=
∫

δū · [D′u′ + ad∗
ξ (D̄u′ + D′ū)]

+δD̄

[
1

2
|u′|2 + ξ · ∇(u′ · ū) − D′2 ∂

∂D̄

(
c2(D̄)

2D̄

)
− ξ · ∇

(
D′ c

2(D̄)

D̄

)]
d3x. (4.3)

In these formulae, recall from(3.1) and (3.3)thatD′ = −div(D̄ξ) and

u′(x, t) = ∂ξ

∂t
+ ū · ∇ξ − ξ · ∇ū = ∂t ξ − adξ ū.

Remark.

• Natural boundary conditionsaren̂ · ū = 0 andn̂ · ξ = 0 on the boundary.
• Recall this is the sameξ as in the GLM theory, so we will be able to make direct comparisons betweeng�m and

GLM after assembling the EP equations for the order O(|ξ |2) approximate theory.
• Note that after substituting the linearized approximations for the fluctuations, the mean Lagrangian and its

variational derivatives now also depend on thegradientsof mean fluid properties.
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4.3. The mean fluctuation momentum

We express the mean fluctuational momentum in various computationally useful equivalent forms as

m′′ = δ

δū
(1

2�
′′) = D′u′ + ad∗

ξ (D̄u′ + D′ū) = D̄(ξ · ∇u′ + u′
j∇ξj ) + ad∗

ξD
′ū

= D̄£ξ (u′)4 + ad∗
ξD

′ū ≡ D̄(ūS − p̄) + ad∗
ξD

′ū,

where superscript ‘flat’(·)4 denotes a one-form and one defines

ūS ≡ ξ · ∇u′ (Stokes mean drift velocity) and p̄ ≡ −u′
j∇ξj (GLM pseudomentum)

In Cartesian components, the geometrical combinations£ξ (u′)4 andad∗
ξD

′ū are expressed as

(£ξ (u′)4)i = ξju′
i,j + u′

j ξ
j
,i = (ūS − p̄)i

and

(ad∗
ξD

′ū)i = ∂j (ūiD′ξj ) + ūjD′∂iξ j .

These are recurring combinations of terms, reappearing throughout theg�m theory.

4.3.1. g�m pseudomomentum
Before the second-variation Lagrangian for theg�m theory is averaged, one finds the momentum canonically

conjugate toξ , given by, cf. the linearized continuityequation (3.4)

π = δ�̄

δ(∂t ξ)
= (D̄u′ + D′ū).

The corresponding pseudomomentum for theg�m theory is then given by

p̃ = −πk∇ξk = −(D̄u′
k + D′ūk)∇ξk.

Thus, our earlier discussion indicates that a WMFI version of compressibleg�m theory would possess a conserved
wave action density given by

N = −πk∂φξk = −(D̄u′
k + D′ūk)∂φξk.

4.3.2. Mean fluctuation momentum—incompressible case
The mean fluctuation momentum takes a simpler form in the incompressible case. RecallD′ = −div(D̄ξ).

Consequently, divu = 0 (which implies divū = 0 = div u′) is consistent with settinḡD = 1 in the mean continuity
equation

∂t D̄ = −div(D̄ū).

Also settingD̄ = 1 in the density fluctuation gives

D′|D̄=1 = −div ξ.

Taking the divergence of theu′ equation (3.1)then yields

div u′ = 0 = ∂t (div ξ) + ū · ∇(divξ).
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So divξ = 0 is preserved, which means we may chooseinitial conditionsso thatD′ = 0. Thus,D′ vanishes (after
taking variations) in the incompressible case, upon invoking the preserved initial conditionsD̄ = 1 and divξ = 0.

Upon settingD′ = 0 in the formulas for the incompressible case, the mean momentum may be expressed
equivalently as

m̄ = δ�

δū

∣∣∣∣∣
D̄=1

= ū + ad∗
ξu′ = ū + £ξ (u′)4 = ū + ξ · ∇u′ + u′

j∇ξj = ū + ūS − p̄

= ū − ξ × curlu′ + ∇(ξ · u′). (4.4)

Here the quantities̄uS andp̄ are the same as in the GLM theory, when rotation is absent.

4.3.3. Simplifications in theg�m Lagrangian for incompressible mean flow
For incompressible mean flow, the second-order Eulerian meang�m Lagrangian(4.2)reduces to the remarkably

simple form

�̄(ū, D̄) =
∫ [

1

2
D̄(|ū|2 + |u′|2) + p̄(1 − D̄)

]
d3x. (4.5)

Here the pressure constraint enforcesD̄ = 1. As a result, the Eulerian mean velocityū satisfying the usual continuity
equation (3.5)is incompressible. Thus, in this case, the fluctuations contribute only to the meang�m kinetic energy
in the Lagrangian̄� and the Eulerian mean flow is incompressible.

4.4. g�m results arising in the EP framework

4.4.1. The motion equation for barotropicg�m
For theg�m theory in which�̄ ≡ ∫

L̄(ū,∇ū, D̄,∇D̄; ξ(x, t))d3x, the EP framework yields the equations of
motion

∂t m̄i + ∂j (m̄i ū
j ) + m̄j ∂i ū

j = D̄
∂

∂xi

δ�̄

δD̄
and ∂t D̄ + div D̄ū = 0.

Here the total mean momentum̄mi for g�m is defined by

m̄i = δ�̄

δūi
= ∂L̄

∂ūi
− ∂k

∂L̄

∂ūi,k

= D̄(ūi + ūS
i − p̄i) + (ad∗

ξD
′ū)i = D̄ūi + D′u′

i + (ad∗
ξ (D̄u′ + D′ū))i , (4.6)

whereūS
i is the GLM Stokes correction and̄pi is the GLM pseudomomentum given earlier. The variational derivative

with respect to mean density is obtained from

δ�̄

δD̄
= ∂L̄

∂D̄
− ∂k

∂L̄

∂D̄,k

.

Remark.

• Note, thelinear fluctuation relations modify theg�m total mean momentum̄mi , which, however, appears in the
nonlinearityof the EP motion equation for theg�m theory.

• The combination ofLagrangian-mean velocitȳuL and pseudomomentum̄p appearing as̄u + ūS − p̄ = ūL − p̄
in the total mean momentum forg�m also appears in the same way in the GLM theory. Here, however, this
combination also adds tōD−1ad∗

ξD
′ū.
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4.4.2. Mean Kelvin circulation theorem for barotropicg�m
d

dt

∮
c(ū)

1

D̄

δ�̄

δū
=
∮
c(ū)

∇ δ�̄

δD̄
· dx = 0,

where forg�m one has, in the compressible barotropic case

1

D̄

δ�̄

δū
= ū + ūS − p̄ + 1

D̄
ad∗

ξD
′ū.

In contrast, for the incompressible case, divū = 0 and one again sets̄D = 1 andD′ = 0 in this formula (after
taking variations) thereby dropping the last term. Thus, in the incompressible case, the contributions to the circulation
integrands are thesamefor bothg�m and GLM theories. However, the velocities of the fluid loops in the Kelvin
circulation theorems aredifferent. They areū for g�m andūL for GLM.

Remark.

• When curl(ūS − p̄ + D̄−1ad∗
ξD

′ū) vanishes, this is the Charney-Drazin “nonacceleration theorem” forg�m for
barotropic compressible fluids. See[2] for their discussion of the GLM case.

• TheEulerian mean vorticitydue to the fluctuations in theincompressiblecase is

curl(ūS − p̄) = −curl(ξ × ω′) = ξ · ∇ω′ − ω′ · ∇ξ = adξω′. (4.7)

For potential fluctuations, one setsω′ = 0, whereω′ = curlu′.

4.4.3. Momentum balance for barotropicg�m
For a mean Lagrangian densitȳL, the EP theory yields the momentum balance

∂t m̄i + ∂j T̄
j
i = ∂L̄

∂xi

∣∣∣∣∣
exp

,

where the total mean momentum̄mi for barotropicg�m is evaluated inEq. (4.6). The stress tensor is defined in the
EP theory for this class of Lagrangians as

T̄
j
i = m̄i ū

j + δ
j
i

(
L̄− D̄

∂L̄

∂D̄
+ D̄∂k

∂L̄

∂D̄,k

)
− ūk,i

∂L̄

∂ūk,j

− D̄,i

∂L̄

∂D̄,j

. (4.8)

Explicitly evaluating the partial derivatives of�̄ for g�m gives

T̄
j
i = m̄i ū

j + δ
j
i

[
p(D̄) + D′u′ · ū − c2(D̄)

D̄
D′2

]

+D̄δ
j
i

[
−ξ · ∇(u′ · ū) + D′2 ∂

∂D̄

(
c2(D̄)

2D̄

)
+ ξ · ∇

(
D′ c

2(D̄)

D̄

)]

+ūk,i (D
′ūk + D̄u′

k)ξ
j + D̄,i

(
ξju′ · ū − c2(D̄)

D̄
D′ξj

)
. (4.9)

As with GLM theory, the momentum balance law is specified, only after∂L̄/∂xi |exp is known. This requires
specifying the explicit spatial dependence in(4.2)of the wave properties and external potential in the Lagrangian
densityL̄ for g�m.
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Remark. Thus, the form of the theory is fixed—it is the EP theory. However, its manifestations and channels for
expressing energy exchange are many. Even in the barotropic case, e.g., there are many different contributions to
the stress tensor from the Lagrangian fluctuationsξ . These contributions are primarily isotropic, including the term
∂L̄/∂xi |exp.

4.4.4. Energy balance for barotropicg�m
A Legendre transformation gives the energy quantity for theg�m fluid flow, namely,

Ē =
〈
δ�̄

δū
· ū
〉
− �̄(ū, D̄, ξ) =

∫ [
1

2
D̄|ū|2 + D̄e(D̄) + 1

2
D̄|u′|2 + D′u′ · ū + c2(D̄)

2D̄
D′2

]
d3x

−
∫
(D̄|u′|2 + D′u′ · ū − (ad∗

ξ (D̄u′ + D′ū)) · ū)d3x ≡
[
E(ū, D̄) + 1

2
E′′
]

−
∫ (

δ�̄

δ(∂t ξ)
· ∂t ξ

)
d3x.

We recognize the last integral term as
∫
π · ∂t ξ d3x, the total “pseudoenergy” for theg�m theory. Hence, just

as for the GLM theory, but now with correspondingly different definitions of terms, we find that dĒ/dt =
−(d/dt)

∫
π · ∂t ξ d3x, in g�m theory, since the mean total energy must be conserved for a self-consistently coupled

theory arising from Hamilton’s principle.

Remark. The quantity1
2E

′′ is the same as the approximately conserved expression from acoustics due to[5]:

1

2
E′′ =

∫ [
1

2
D̄|u′|2 + D′u′ · ū + c2(D̄)

2D̄
D′2

]
d3x

as discussed in[3]. However, this quantity is not the pseudoenergy for barotropicg�m theory.

4.5. Remarks aboutg�m closure and rapid distortion theory

• Theg�m theory linearizes theu′ equation, so it neglects the nonlinear term div(u′u′ − u′u′) that appears in the
u′ equation for Reynolds turbulence closure in the Eulerian mean setting.

• Rapid distortion theory.Based on ideas from Lagrangian stability analysis and closely related to ideas from
WMFI theory, theg�m equations are also related to ideas from rapid distortion theory (RDT). See[7] for an
interesting discussion of the close connections between RDT and WKB stability theory.

• Nonlinear effects of linear closure.In principle, the Lagrangian statistics for the coefficients in the nonlinear
g�m equations may be closed at second moments, since the fluctuationsξ and u′ are both taken to satisfy
linear equations. Thus, the linearity of theg�m equations would allow one to derive a set of equations for
second moments such asξ × curlu′ in the incompressible case and treat the combined system for the mo-
tion and the Lagrangian statistics as an initial value problem. This could be done by computing∂t (ξ × curlu′)
using the linearized Euler motion equation for evolvingu′ and using theu′ equation for the evolution
of ξ .

Such a linear closure would not produce only linear effects in the mean motion equation. Theg�m effects
arise from second moments. Theg�m effects appear multiplicatively in the stress tensor and additively in the
definition of the total mean momentum. The latter appears also in the nonlinearity of theg�m equations. Thus,
although the mean advection relations are enforced only atlinear order, the contributions of the fluctuations to
theg�m motion equation are both linear and nonlinear.

• Theg�m theory expresses wave properties in terms of Lagrangian displacement statistics and gradients of mean
flow properties. Consequently, one may consider imposing aspects of these relations between wave properties and
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mean gradients, before taking variations in Hamilton’s principle, by regarding these wave, mean flow relations
as a type ofTaylor hypothesis. We shall follow this idea further inSection 5.

4.6. EPg�m equations for incompressible mean flow

The variational derivatives of theg�m Lagrangian(4.5) for incompressible flow

�̄(ū, D̄) =
∫ [

1

2
D̄(|ū|2 + |u′|2) + p̄(1 − D̄)

]
d3x, (4.10)

are given by, cf.Eq. (4.4),

δ�̄(ū, D̄)

=
∫ [

δD̄

(
1

2
(|ū|2+|u′|2)−p̄

)
+δp̄(1 − D̄)+D̄δū · (ū−ξ × curlu′ + ∇(ξ · u′)) + δū · u′div(D̄ξ)

]
d3x.

We define theg�m circulation velocity as

v̄ ≡ ū − ξ × curlu′ + ∇(ξ · u′).

The corresponding EP motion equation (with∇ · ū = 0) is expressed as

∂

∂t
v̄ + ū · ∇v̄ + v̄j∇ūj + ∇p̄ = 0.

This is the EP equation for the Lagrangian(4.10). It also has the equivalent form

∂

∂t
v̄ − ū × curl v̄ + ∇(v̄ · ū + p̄) = 0.

Thus, the Kelvin circulation theorem for the incompressibleg�m equations is simply

d

dt

∮
c(ū)

(ū − ξ × curlu′) · dx = 0. (4.11)

Remark. We recall thatu′ = ∂t ξ + ū · ∇ξ − ξ · ∇ū. For the case that∇ · ū = 0 and∇ · ξ = 0, this becomes
u′ = ∂t ξ − curl(ū × ξ). Hence, toclosetheg�m EP motion equation for incompressible Eulerian mean flow, only
one key elementfrom the Lagrangian statistics must be specified. Namely, the quantity

ξ × ω′ = ξ × curlu′ = ξ × curl (∂t ξ − curl(ū × ξ)), (4.12)

must be specified in terms ofū, ∇ū and∇∇ū. This specification is one of the main objectives of the discussions in
the next section.

5. Alpha models

5.1. Opening remarks

We have seen that the use of Taylor expansions in the linearized fluctuation relations summons gradients of Eule-
rian mean fluid quantities into the mean second-variation Lagrangian. In turn, these gradients summon second-order
spatial derivatives such as∇∇ū into theg�m motion equation that results from the EP variational principle.
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Fig. 1. GLM/g�m/THC technique.

Among other things, theg�m stress tensor(4.9) for a compressible fluid shows the variety of channels available
for energy exchange to occur. These channels arise through the various combinations of Eulerian mean gradients
that appear in the stress tensor for theg�m theory. The incompressible case is more straightforward because it has
fewer such channels. However, to achieve closure, even the incompressibleg�m case still requires an assumption to
express the key element of the Lagrangian statistics(4.12)in terms ofū, ∇ū and∇∇ū. The linearized fluctuation
equations themselves (relating the Eulerian and Lagrangian small disturbances) shall guide the formulation of such
approximate closure assumptions.

Approach. The approach to the alpha-model equations is closely related to theg�m approach, but with one
important difference. Namely, the order is interchanged in the steps of making approximations and varying the EP
Lagrangian in Hamilton’s principle.

• To obtain theg�m equations:we (i) expanded the Lagrangian, (ii) took its Eulerian mean, then (iii) varied to
obtain the equations of motion, andfinally saw the need to approximate the closure. This could be done, in
principle, by using theu′ equation for the tendency ofξ and the linearization of the GLM equations for the
tendency ofu′. We shall discuss a more direct approach to closure that yields the�-models.

• To obtain the�-models:we shall (i) expand the Lagrangian, (ii) take its Eulerian mean, (iii) approximate the
Lagrangian (by taking a particular solution of theu′ equation as aTaylor hypothesis), and then (iv) vary to find
a closed set of EP motion equations. This approach is illustrated inFig. 1.

Remark. Because of the close relation between the approaches used in deriving these two sets of equations, one
might hope for a bridge between them. For example, theg�m equations could potentially provide an Eulerian
diagnostic for determining parameters in the alpha model from DNS of the full Euler equations (or Navier–Stokes
equations). Theg�m equations form a systematic approximation for the original GLM equations, within the EP
framework. Thus, perhaps the GLM equations could be used to help answer questions that may arise at the other
levels of approximation in this framework, particularly, in the alpha models.

5.2. THC approach

We shall use partial, or particular, solutions of the linearized velocity fluctuationequation (3.1)

u′ = ∂t ξ + ū · ∇ξ − ξ · ∇ū

to guide certain choices ofTaylor hypotheses. The three Taylor hypotheses we shall discuss for theu′ equation are:2

2 These three THC are for theg�m equations. Later, we shall mention THC#4—for the GLM equations.
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THC#1. Neglect space and time derivatives ofξ in the u′ equation, or, set dξ/dt = ∂t ξ + ū · ∇ξ = 0. In the
incompressible case, this yields the original Euler-alpha model of Holm et al.[25,26], in which one assumes
u′ = −ξ · ∇ū.

THC#2. Assume thatξ is frozen-in as a one-form. In the incompressible case, this yields the anisotropic alpha
model of Marsden and Shkoller[32], with u′ = −2ξ · ē, whereē = 1

2(∇ū + ∇ūT) is the mean strain rate tensor,
and∂t ξ + ū · ∇ξ = −∇ūT · ξ .

THC#3. Assume thatξ is frozen-in as a two-form in three dimensions. Hence, set∂t ξ + ū · ∇ξ = ξ · ∇ū − ξdiv ū.
This assumption impliesu′ = −ξdiv ū, which, of course, is only interesting in the compressible case. For
compressible flows, this choice lead to similarities with the Green–Naghdi equation for shallow water dynamics.
The Green–Naghdi equation is discussed in[19]. See, e.g.[9] for more references and an asymptotic treatment
of these equations.

Remark about algebraic closure. Neglecting the partial time derivative in the linearized velocity fluctuation
equation foru′ leads to an “algebraic closure relation,” expressed as

u′ = ū · ∇ξ − ξ · ∇ū = curl(ξ × ū)

in the incompressible case. We note that substituting this algebraic closure relation into theg�m Lagrangian(4.2)
yields the following contribution to the mean fluctuational momentum

m′′ = δ

δū

∫
1

2
|u′|2 d3x = −ξ × curl curl(ξ × ū).

So, in this incompressible case, the contribution of the fluctuations to the mean total momentum (or pseudomomen-
tum) keeps the sameg�m form as inEqs. (4.11) and (4.12). However, the Lagrangian statistics issteadyin Eulerian
space. We shall decline this option.

The Taylor hypotheses THC#1–#3are approximate relations between Eulerian and Lagrangian statistics (namely,
they are relations foru′ as a function ofξ and its derivatives) that yield closures when substituted into the averaged
Lagrangian in Hamilton’s principle. We shall first discuss the incompressible case, which is simpler, and then we
shall discuss the barotropic compressible case.

In both cases, we shall illustrate theTHC techniqueby substituting the first of these three Taylor hypotheses into
theg�m Lagrangian, before taking its variations. This approach results via the EP framework in closed equations
based on theg�m equations that retain their Kelvin circulation theorem and conservation properties. Among these
closed equations for the incompressible case are variants of the Euler-alpha model (or, averaged Euler equations)
that are also related to the theory of second grade fluids and have been discussed as potential turbulence closure
models when Navier–Stokes viscous dissipation is introduced, as in[10–13]. We shall show how this approach also
leads to a new generalization of the Euler-alpha model that includes compressibility.

5.3. A brief history of the alpha models

The Euler-alpha equations for averaged incompressible ideal fluid motion were first derived in[25] in the context
of the EP theory for fluid dynamics. That derivation proceeded essentially by choosing the kinetic energy to be theH1

norm of the Eulerian fluid velocity, rather than the usualL2 norm. This choice generalized the unidirectional shallow
water equation of Camassa and Holm[8] from one dimension to three dimensions. The resultingn-dimensional
Euler-alpha equation is (with∇ · u = 0, v ≡ u − α2∆u and constant length scaleα)

∂

∂t
v + u · ∇v + vj∇uj + ∇p = 0. (5.1)
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This is the EP equation for the Lagrangian3

� = 1

2

∫
|u|2 + α2|∇u|2 d3x (5.2)

for a constantα and divergenceless fluid velocityu. Mathematically, this equation describes geodesic motion on the
volume-preserving diffeomorphism group ofR3 relative to theH1 norm in a sense similar to the work of Arnold
[4] and Camassa and Holm[14] in which the Euler equations are shown to describe geodesic motion on the same
diffeomorphism group relative to theL2 kinetic energy norm.

Remarkably, theH1-geodesic Euler-alpha equation was later recognized as being identical to the well-known
invisicid second grade fluid equations introduced by Rivlin and Ericksen[34], although of course these equations
were derived from a completely different viewpoint. The differences in their derivations imply corresponding
differences in the interpretations of the solutions of these equations in each of their contexts. In particular, the
constant parameter alpha (a length scale) is interpreted differently in the two theories. In the Euler-alpha model,
the parameter alpha is associated with the flow regime and, in numerical simulations,alpha separates active and
passive degrees of freedom, as shown in[13]. (Physically, alpha is the smallest active length scale participating in
the nonlinear interactions—so scales smaller than alpha are swept along by the larger ones.) This is in contrast to
the theory of second grade fluids, where alpha is an equilibrium thermodynamic material parameter whose values
are restricted by the Gibbs–Duhem inequality.

THC#4, a nonlinear GLM Taylor hypothesis.In [21], a nonlinear GLM Taylor hypothesis was introduced and
applied for both compressible and incompressible flows. This Taylor hypothesis THC#4for GLM assumes that the
Lagrangian displacement fluctuationξ is frozen as aLagrangian vector fieldinto thenonlinearGLM flow. Namely
(noteūL rather than̄u)

u� ≡ ∂t ξ + ūL · ∇ξ = ξ · ∇ūL . (5.3)

This THC#4is substituted directly into the GLM averaged Lagrangian, e.g.(2.2) or (2.7), without linearizing the
fluctuation relations. One may then vary the Lagrangian in the EP framework,withoutmaking the small-amplitude
approximation. This THC#4treats the fluctuating Lagrangian displacementξ as a material property associated with
the frozen-in GLM motion of a “cloud” of fluid parcels initially displaced from one another by the initial value of
ξ , which isnot taken to vanish in this case. Under the GLM dynamics, the assumed nonlinear frozen-in relation for
THC#4implies additional flow stresses as each fluid parcel convects this material property.

The THC#4may appear formally similar to the others, especially to THC#1. However, THC#4differs fundamen-
tally from the others by being imposed as a finite, rather than a small-amplitude, approximation. Thus, THC#4couples
to the gradients of the full Lagrangian-mean velocity, rather than to the gradients of its Eulerian mean small-amplitude
approximation. Of course, the other THC#1–#3could also be made at the nonlinear GLM level, without first making
the linearized fluctuation hypotheses that lead to theg�m theory. It turns out that THC#1leads to a trivial result in
this case, and the other nonlinear Taylor hypotheses have not yet been analyzed at the GLM level. The implications
and physical interpretations of the GLM results of THC#4are discussed in[21]. This includes discussions of an
interesting duality between the Eulerian-mean and Lagrangian-mean fluid velocities that arises for THC#4in the
GLM theory.

5.3.1. Extensions of Euler-�

The works of Marsden and Shkoller[31] used the EP framework to introduce a certain type of filtering—called
“fuzzying”—into the Lagrangian. Applying the EP reduction theorem to the Lagrangian for “fuzzy flow” yielded

3 For incompressible flow∇ · u = 0 and constantα, one may replace|∇u|2 in this Lagrangian equivalently with 2tr(e · e), wheree =
1
2(∇u + ∇uT) is the strain rate.
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an alternative formal derivation of the incompressible Euler-� model, as well as an anisotropic variant of it and
the extension of that variant to Riemannian manifolds. These works also showed short time existence for solutions
of the Euler-� model and these extensions, by establishing for it the analog of the Ebin–Marsden theorem for the
incompressible Euler equations, proven in[14]. See also[35,36,30]for the corresponding existence results for the
original Euler-alpha model of Holm et al.[25].

While these references do make use of the EP reduction theorem, they do not show that the reduced equations
obtained from it would also result from applying the “fuzzy flow” averaging method directly to Euler’s equations. The
EP Averaging Resultguaranteesthis result, however, when the GLM averaging method is applied. For example, to
the extent that the fuzzy averaging used in[31] fails to possess the projection property, the resulting EP equations will
fail to coincide with fuzzy average of the original equations. Investigations of the relation between Marsden–Shkoller
fuzzy averaging and GLM averaging are underway.

5.4. Barotropicg�m, a closure model for barotropicg�m

In seeking its variational closure, we shall start with the small-amplitudeg�m Lagrangian(4.2) for barotropic
compressible flow at second order

�̄ = �̄0 + 1

2
�′′ =

∫ [
1

2
D̄|ū|2 − D̄e(D̄)

]
d3x +

∫ [
1

2
D̄|u′|2 + D′u′ · ū − 1

2

c2(D̄)

D̄
D′2

]
d3x. (5.4)

Into this g�m Lagrangian, we shall substitute the simplest available hypothesis for closing the barotropicg�m

system, namely4

u′ = −ξ · ∇ū and D′ = −ξ · ∇D̄. (5.5)

This substitution yields the mean Lagrangian for the closed barotropicg�m system (barotropicg�m)

�̄= �̄0 + 1

2
�′′ =

∫ [
1

2
D̄|ū|2 − D̄e(D̄)

]
d3x

+
∫ [

1

2
D̄ξkξ l ū,k · ū,l + ξkξ l ū · ū,kD̄,l − c2(D̄)

2D̄
ξkξ lD̄,kD̄,l

]
d3x. (5.6)

With theg�m closure hypothesis(5.5)no derivatives of the fluctuation statistics appear in this mean Lagrangian.
Combining the closure hypothesis(5.5)with theu′ equation (3.1)implies(∂t + ū · ∇)ξ = 0, i.e., componentwise

advection ofξ . Consequently, the components of the quadratic Lagrangian moments are simply carried along with
the Eulerian mean flow, as

(∂t + ū · ∇)ξkξ l = 0. (5.7)

This ξξ equation admits theisotropic solution

ξkξ l = α2δkl,

whereα is an advected scalar(∂t + ū · ∇)α = 0, that has dimensions of length. In turn, this advective relation forα

also admits a constant solution, should we wish to simplify the dynamics of the Lagrangian moments even further.

4 For compressible flows, the other Taylor hypotheses THC#2and THC#3lead to similar formulas to those given in this section. In particular,
all three Taylor hypotheses preserve properties of homogeneity and isotropy, if these properties are initially present. We shall not discuss those
other cases here. The implications of Taylor hypothesis THC#2forincompressibleflows are analyzed in[32].
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To develop the barotropic closure modelg�m, we shall substitute the variational derivatives of�̄ into the following
EP equation, cf.Eq. (2.1),

∂

∂t

δ�̄

δūi
+ ∂

∂xk

(
δ�̄

δūi
ūk
)

+ δ�̄

δūk

∂ūk

∂xi
= D̄

∂

∂xi

δ�̄

δD̄
− δ�̄

δξkξ l

∂ξkξ l

∂xi
. (5.8)

The contribution of the last term arises from the scalar advection of the components ofξkξ l . The necessary variational
derivatives may be obtained from

δ�̄ =
∫ [

((1 − ∆̂)(D̄ū) + ξkξ l ū,kD̄,l) · δū + Γklδ(ξkξ l) − Π̄g�mδD̄
]

d3x, (5.9)

with homogeneous boundary conditions,

n̂ · ū = 0 and n̂ · ξξ = 0 on the boundary.

These are the physically meaningful conditions at fixed boundaries. Weaker boundary conditions may also suffice
in this case, namely,

n̂ · ū = 0 and n̂ × (n̂ · ξξ · ∇)ū = 0 on the boundary.

Here the generalized Laplacian operator∆̂ is defined by

∆̂ = ∂lξ kξ l∂k, (5.10)

and theg�m potentialΠ̄g�m is defined by

Π̄g�m = (1 − ∆̂)(1
2|ū|2 − h(D̄)) + 1

2ξ
kξ l ū,k · ū,l − 1

2ξ
kξ lD̄,kD̄,lh

′′(D̄),

whereh′(D̄) = c2(D̄)/D̄. The quantityΓkl denotes the variational derivative of�̄with respect to the mean Lagrangian
statistical moments. Namely,

Γkl = δ�̄

δξkξ l
= 1

2
D̄ū,k · ū,l + ū · ū,kD̄,l − 1

2
D̄,kD̄,lh

′(D̄).

The EP motionequation (5.8)for the barotropicg�m closure model is, thus,

∂t m̄i + ∂j (m̄i ū
j ) + m̄j ∂i ū

j = D̄∂iΠ̄
g�m − Γkl∂iξkξ l, (5.11)

where the total mean momentum for barotropicg�m is given by

m̄ = δ�̄

δū
= (1 − ∆̂)(D̄ū) + ξkξ l ū,kD̄,l = D̄ū − 1

2
[∆̂(D̄ū) + D̄∆̂ū + ū∆̂D̄]. (5.12)

This momentum may be expressed as anL2-symmetric operator acting on the mean fluid velocity:

m̄ = [(D̄ − 1
2∆̂D̄) − 1

2(∆̂D̄ · +D̄∆̂·)]ū ≡ (D̄ − Ô)ū, (5.13)

which defines the operator̂O. (The first parenthesis in the square brackets contains a multiplier and the second one
contains aL2-symmetric operator.)

To make a connection between the barotropicg�m motionequation (5.11)and the original GLM motionequation
(1.5), we shall identify the mean momentum asm̄ = D̄(ū − p̄) with pseudomomentum density

D̄p̄ ≡ 1
2[∆̂(D̄ū) + D̄∆̂ū + ū∆̂D̄] = Ôū.
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This identification of pseudomomentum and the continuity equation forD̄ allowsEq. (5.11)to be rewritten as, cf.
Eq. (1.5),

(∂t + ū · ∇)(ū − p̄) + (ūk − p̄k)∇ūk − ∇Π̄g�m + 1

D̄
Γkl∇ξkξ l = 0. (5.14)

The closed barotropicg�m system consists of the EP motionequation (5.11)and two auxiliary equations. These
are the continuityequation (3.5)for D̄ and the advectionequation (5.7)for ξkξ l , recalled as

∂t D̄ + div D̄ū = 0 and (∂t + ū · ∇)ξkξ l = 0. (5.15)

The dynamical properties of the closed barotropicg�m system may be investigated using the EP framework. For
these equations, we have the Kelvin–Noether circulation theorem, as well as conservation laws for potential vorticity,
momentum and energy.

5.4.1. Kelvin–Noether circulation theorem for barotropicg�m
In the EP framework, the Kelvin–Noether theorem implies the circulation relation, cf.Eq. (2.2)for adiabatic

GLM,

d

dt

∮
c(ū)

1

D̄
m̄ · dx = −

∮
c(ū)

1

D̄
Γkl dξkξ l .

Thus, the advected Lagrangian statistical momentsξkξ l play the same role that specific entropy and relative buoyancy
played in the adiabatic and stratified GLM cases treated earlier. From Stokes theorem and scalar advection ofξkξ l ,
we also find thetensor potential vorticity evolutionequation

(∂t + ū · ∇)qpq = −∇
(

1

D̄
Γkl

)
· ∇ξkξ l × ∇ξpξq, where qpq = 1

D̄
∇(ξpξq) · curl

(
1

D̄
m̄
)
, ∀p, q.

Thus, anisotropy in the statistics ofξkξ l will create tensor potential vorticityqpq. If the fluctuation statistics are
initially isotropic, so thatξkξ l = α2δkl at the initial time, then they will remain so, and the correspondingly isotropic
potential vorticity will be conserved along barotropicg�m particle trajectories.

5.4.2. Momentum conservation for barotropicg�m
Because the Lagrangian̄� in Eq. (5.6)is invariant under translations, Noether’s theorem yields the momentum

conservation law(2.5),

∂t m̄i + ∂j T̄
j
i = 0,

wherem̄ = δ�̄/δū is theg�m Eulerian-mean momentum density inEq. (2.6)and the Eulerian-mean stress tensor
T̄
j
i is written inEq. (2.6)in the form

T̄
j
i = m̄i ū

j + δ
j
i

(
L̄− D̄

∂L̄

∂D̄

)
.

For theg�m theory, thisstress tensoris given in terms of mean fluid quantities by

T̄
j
i = m̄i ū

j + δ
j
i P − D̄,iξ j ξk(|ū|2 − h(D̄)),k − ūm,i ξ

j ξk(D̄ūm),k.

HereP denotes the totalg�m mean pressure,

P = (1 − ∆̂)p(D̄) + 1
2D̄∆̂|ū|2 + 1

2ξ
kξ lD̄,l(|ū|2 + c2(D̄) + h(D̄)),k.

For an idealγ -law gas,c2 = γp(D̄)/D̄ andc2 + h = γ c2/(γ − 1).
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5.4.3. Energy conservation for barotropicg�m
The Legendre transformation of the mean Lagrangian(5.6) yields the conserved mean energy, also given by

Noether’s theorem, as

H̄ =
∫

δ�̄

δū
· ū d3x − �̄(ū, D̄, ξkξ l) =

∫ [
1

2
D̄|ū|2 + D̄e(D̄) + 1

2
D̄ξkξ l ū,k · ū,l + c2(D̄)

2D̄
ξkξ lD̄,kD̄,l

]
d3x.

We note that we may write the latter two terms in the mean conserved energyH̄, i.e., those due only to fluctuations,
as

1

2
H′′ =

∫ [
1

2
D̄|u′|2 + c2(D̄)

2D̄
D′2

]
d3x 
= 1

2
E′′.

This expression doesnot recover the result of Blokhintsev[5] mentioned earlier inEq. (4.4). However, it has the
advantage of being a positive-definite mean fluctuational energy for the closedg�m system.

5.4.4. Lie–Poisson Hamiltonian formulation of barotropicg�m
Being an EP system, the barotropicg�m theory may be transformed into Lie–Poisson Hamiltonian form, by fol-

lowing the procedure explained in[25]. This Hamiltonian formulation begins by writing the Legendre-transformed
energy in terms of the momentum. We shall assume the operator(D̄ − Ô) in momentum–velocity relation(5.13)
is invertible, so that one may solve for the velocity from the momentum asū = (D̄ − Ô)−1m̄. Thus, the energy
Hamiltonian for

H̄ =
∫ [

1

2
m̄ · (D̄ − Ô)−1m̄ + D̄e(D̄) + c2(D̄)

2D̄
ξkξ lD̄,kD̄,l

]
d3x.

The ideal barotropicg�m equations may now be treated in the Lie–Poisson Hamiltonian framework, if so desired.
The corresponding Lie–Poisson bracket is of the standard type, defined on the dual of a certain semidirect-product
Lie algebra, as described, e.g., in[28]. See also[29] for an introduction to this now-standard theory and references
to the literature.

5.4.5. Barotropicg�m-�, a simplification of barotropicg�m for constant isotropic Lagrangian statistics
The scalar advectionequation (5.15)for the Lagrangian statistical moments admits the constant isotropic solution

ξkξ l = α2δkl, whereα is a constant length scale. Theg�m Lagrangian(5.6) in this case simplifies to, cf. the
Lagrangian(5.2) for the incompressible Euler-alpha model:

�̄ =
∫ [

1

2
D̄|ū|2 − D̄e(D̄)

]
d3x + α2

∫ [
1

2
D̄|∇u|2 + 1

2
∇|ū|2 · ∇D̄ − c2(D̄)

2D̄
|∇D̄|2

]
d3x. (5.16)

This is the Lagrangian for the compressibleg�m-� model with constant length scaleα. For constantα, the generalized
Laplacian∆̂ in the previous equations reduces to∆̂ → α2∆, where∆ is the ordinary Laplacian. The result is a
compressible generalization of the Euler-alpha model. The equations of motion for this model are(5.11), (5.13)
and (5.15)with ξkξ l = α2δkl and∆̂ → α2∆ for constantα.

5.4.6. Barotropicg�m models in a rotating frame
The EP setting is convenient for transforming the averaged Lagrangian�̄ into a rotating frame.

One defines the rotation vector potentialR satisfying curlR = 2Ω(x), for a spatially dependent rotation fre-
quencyΩ(x). The transformation begins by substituting into the original Lagrangian the linearized relationū +
u′ = ū∗ + u′∗ + R̄ + R′, with R′ = R� − ξ · ∇R̄. One then averages and finally drops the asterisk in(·)∗
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to find, cf.Eq. (5.4),

�̄=
∫ [

1

2
D̄|ū + R̄|2 − D̄e(D̄)

]
d3x

+
∫ [

1

2
D̄|u′|2 + 1

2
D̄|R′|2 + D′(u′ + R′) · (ū + R̄) − 1

2

c2(D̄)

D̄
D′2

]
d3x. (5.17)

For aconstantrotation frequency,̄R = Ω × x andR′ vanishes. In this Lagrangian, the velocitiesū andu′ are
measured in the rotating frame. The analysis then proceeds as in the earlier sections in the EP setting. See, e.g.
Eqs. (2.2), (2.7), (4.2), (5.6) and (5.8).

Outlook.

• We shall discuss the effects of rotation and its interaction with fluctuations elsewhere, in the simpler shallow
water context where we may also compare with results of Bühler and McIntyre[6].

• The proper choice of dissipation for this system deserves further investigation. One may propose to add dissipation
asshear and bulk viscosityin the form

∂t , m̄i + ∂j T̄
j
i = ∂

∂xj
(µÔ(ui,j + uj,i) + ηδij Ô(uk,k)),

whereÔ is the positiveL2-symmetric operator inEq. (5.13). This choice assures monotonic decay of the energy
in (5.16)for homogeneous boundary conditions. Work is in progress to add viscosity and account for its heating
effects in compressible flows. However, these effects go beyond theg�m−� equations and will be discussed else-
where. For discussions of viscous effects in the incompressible Lagrangian Averaged Navier–Stokes-� equations,
see[15,16,31].

6. Conclusions

Synopsis.This paper connects the GLM equations to the Lagrangian-averaged Euler-alpha models through a
new set of Eulerian meang�m fluid equations that are derived in the small-amplitude limit of the GLM equations.
These equations comprise a one-point closure approximation that is second-order in the Lagrangian fluctuation
statistics. In principle, these equations may be closed by using the linearized dynamics of the original equations in
combination with the linearized fluctuation relations. However, because of the complexity still remaining even at
the intermediateg�m level, we sought simpler closures by using these linearized fluctuation relations to guide our
choices among the variousTaylor hypothesesfor deriving variants of the Euler-alpha models and related models in a
variational closure procedure. Following the original procedure discussed in[25] for deriving the Euler-alpha model,
one substitutes these linear versions of the Taylor hypothesis into the Lagrangian before taking its Eulerian mean and
then its variations in the EP framework. This procedure preserved the Kelvin–Noether circulation theorem, which
is a basic geometrical property of all ideal fluid models. This procedure also preserved the mean momentum and
energy balances. Finally, the procedure led to a barotropic compressible generalization of the Euler-alpha models.

6.1. Summary

In this paper, we developed the geometric approach to dimension reduction especially for models of turbulence
in weakly compressible fluids in the context of GLM averaging. Our approach concentrated on reduction of the
Lagrangian in Hamilton’s principle for adiabatic compressible fluid dynamics by using a combination of compatible



284 D.D. Holm / Physica D 170 (2002) 253–286

symmetries and averaging in the EP framework. This approach is versatile enough to include ocean circulation
models for global climate modeling, as well as fundamental research in turbulence. The present paper analyzes the
basic equations in the framework of the EP theory and thereby presents them in a unified geometrical context for
further application.

The EP Averaging Result establishes the equivalence of modeling using the GLM approach, either by directly
averaging the equations of motion, or by averaging the Lagrangian for these equations before taking its variations. We
discussed EP formulations of both Lagrangian-mean, and Eulerian-mean fluid equations for modeling turbulence.

We used various elements of the classical theory of turbulence, including:

• Reynolds decomposition(s),
• THC (Taylor Hypothesis Closure),
• Hamilton’s principle,
• Averaged Lagrangians and
• Euler–Poincaré equations

to model and analyze the mean dynamical effects of fluctuations on three-dimensional exact Lagrangian-mean and
approximate second-order Eulerian-mean fluid motion.

Our starting point was the exact nonlinear GLM equations of Andrews and McIntyre[2] for a compressible
adiabatic fluid. We first recast the GLM equations as EP equations resulting from the Lagrangian mean of Hamilton’s
principle, written in the Eulerian fluid description. This demonstrated the validity of the general principles underlying
the EP Averaging Result. We then used the small-amplitude approximation to linearize the relations between
Lagrangian disturbances and Eulerian fluctuations. We substituted these linearizations into Hamilton’s principle
for the GLM equations and kept terms up to quadratic order before taking the Eulerian mean. The EP equations
resulting from this approximate Eulerian-mean Lagrangian produced a new set ofg�m equations. These comprise a
second-order (one-point, weakly compressible) turbulence closure model that captures some aspects of the influence
of the small scale dynamics on the large scale flow—while preserving the mathematical structure of the original
Euler equations.

We observed thatg�m theory relates certain combined Eulerian and Lagrangian aspects of wave properties
through expressions also involving gradients of mean flow properties. This observation suggested we consider
closure schemes that involve substituting approximations or truncated versions of these relations between wave
properties and mean gradients into Hamilton’s principle, before taking its variations. Thus, we regarded these
approximated, or truncated, relations as a type ofTHC. We tried one of the simpler variants of this idea and found
a new compressible generalization of the Euler-alpha models, theg�m closure, whose solution behavior remains to
be studied.

Thus, introducing such Taylor-hypotheses into the second-order Eulerian-mean closure approximation for the
g�m theory led to variants of the Euler-alpha models, and a framework for exploring other options. This included
finding new variants of them for compressible flows that we discussed inSection 5.4.

Being derivable in the EP framework, the GLM theory, as well as its second-order Eulerian-mean closure ap-
proximation, the newg�m theory, and the new compressibleg�m generalization of the Euler-alpha equations, all
possess the same fundamental structure and underlying geometry that are shared by all other ideal fluid theories in
the EP framework. This geometrical structure ensures that these fluid theories (both exact and approximate ones)
each retains its own Kelvin circulation theorem and the associated conservation law for potential vorticity arising
from it by Noether’s theorem, for particle relabeling symmetry. The EP framework also implies balance laws for
momentum and energy exchanges between mean flow and wave properties.

The geometrical structure of the EP framework leads, in addition, to the Lie–Poisson Hamiltonian formulation for
GLM theory, its Eulerian-mean closure approximation and the variants of the Euler-alpha models. This Hamiltonian
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formulation possesses potential-vorticity Casimirs associated with its Lie–Poisson bracket. In turn, the Lie–Poisson
Hamiltonian structure leads to the energy-Casimir method for characterizing equilibrium solutions as critical points
of a constrained energy and for establishing their nonlinear Liapunov stability conditions. All of these additional
features are now available, for the GLM theory, for its Eulerian-mean closure approximation, theg�m theory, for
the compressibleg�m closure model, and also for the alpha models and any new variants of them that may arise in
the future.

Theg�m theory provides a bridge that spans from the alpha models to the exact nonlinear GLM theory. We hope
this bridge will be useful in answering questions that arise in the context of the alpha models and other turbulence
closure models. Of course, much remains to be done in this regard. Theg�m framework seems to offer a promising
new opportunity for modeling the nonlinearity of fluid turbulence from a Lagrangian perspective.
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